Nanotechnology Now – Press Release: Lab to industry: InSe wafer-scale breakthrough for future electronics


Home > Press > Lab to industry: InSe wafer-scale breakthrough for future electronics

Abstract:
In a landmark advancement for next-generation electronics, researchers from the International Center for Quantum Materials at Peking University in collaboration with Renmin University of China have successfully fabricated wafer-scale two-dimensional indium selenide (InSe) semiconductors. Led by Professor Liu Kaihui, the team developed a novel “solid–liquid–solid” growth strategy that overcomes long-standing barriers in 2D semiconductor manufacturing.

Lab to industry: InSe wafer-scale breakthrough for future electronics


Beijing, China | Posted on August 8th, 2025

Published in Science under the title “Two-dimensional indium selenide wafers for integrated electronics,” the study demonstrates exceptional electronic performance, surpassing all previously reported 2D film-based devices. The fabricated InSe transistors exhibit ultra-high electron mobility and a near-Boltzmann-limit subthreshold swing at room temperature, establishing a new benchmark for 2D semiconductors.

Background: Why InSe?
Indium selenide, often referred to as a “golden semiconductor,” offers an ideal combination of properties—low effective mass, high thermal velocity, and a suitable bandgap. Despite these advantages, its wafer-scale integration has remained elusive due to the difficulty of precisely maintaining a 1:1 atomic ratio between indium and selenium during synthesis. Traditional methods have only yielded microscopic flakes, insufficient for practical electronic applications.

Why it matters
As Moore’s Law slows and silicon nears its physical limits, the semiconductor industry faces growing pressure to identify alternative channel materials. In this context, the successful fabrication of large-area crystalline InSe wafers represents a pivotal step toward faster, more energy-efficient, and smaller chips for next-generation electronics.

The In–Se system faces challenges due to multiple stable phases and extreme vapor pressure differences between indium and selenium, making it difficult to maintain stoichiometry during growth. These issues hinder phase purity, crystal quality, and overall device stability. Professor Liu Kaihui’s team developed a novel solid–liquid–solid conversion strategy. This process begins with the deposition of an amorphous InSe thin film onto sapphire substrates using magnetron sputtering. The wafer is then encapsulated with low-melting-point indium and sealed inside a quartz cavity. When heated to approximately 550 °C, the indium creates a localized, indium-rich environment that promotes controlled dissolution and recrystallization at the interface. This carefully orchestrated reaction results in the formation of uniform, single-phase crystalline InSe films. This method produced 2-inch wafers with world-first crystallinity, phase purity, and thickness uniformity for 2D InSe.

Device Performance
Using these wafers, the team fabricated large-scale transistor arrays that demonstrated outstanding performance, including an electron mobility of up to 287 cm²/V·s and an average subthreshold swing of 67 mV/dec. The devices exhibited excellent behavior at sub-10 nm gate lengths, characterised by reduced drain-induced barrier lowering (DIBL), lower operating voltages, enhanced on/off current ratios, and efficient ballistic transport at room temperature.

Significantly, the devices surpassed 2037 IRDS projections for delay and energy-delay product (EDP), positioning InSe ahead of silicon in key future benchmarks.

This breakthrough opens a new pathway for the development of next-generation, high-performance, low-power chips, which are expected to be applied widely in cutting-edge fields such as artificial intelligence, autonomous driving, and smart terminals in the future. Reviewers of Science have hailed this work as “an advancement in crystal growth.”

*This article is featured in PKU News “Why It Matters” series. More from this series.
Read more: https://www.science.org/doi/10.1126/science.adu3803

Written by: Akaash Babar
Edited by: Zhang Jiang
Source: Xinhua News

####

For more information, please click here

Contacts:
Jiang Zhang
Peking University

Office: 10-62757083

Copyright © Peking University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Paper:

News and information


New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025


Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025


Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025


New imaging approach transforms study of bacterial biofilms August 8th, 2025

2 Dimensional Materials


ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025


First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025


Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Possible Futures


ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025


New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025


Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025


First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology


A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025


Programmable electron-induced color router array May 14th, 2025


Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025


Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanoelectronics


Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023


Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022


Reduced power consumption in semiconductor devices September 23rd, 2022


Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements


Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025


Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025


Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025


ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025


Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025


First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025


New imaging approach transforms study of bacterial biofilms August 8th, 2025

Research partnerships


INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025


Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025


HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025


SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Leave a Reply

Your email address will not be published. Required fields are marked *